Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Microbiol ; 13: 1086627, 2022.
Article in English | MEDLINE | ID: covidwho-2199027

ABSTRACT

Currently, it is believed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an airborne virus, and virus-containing aerosol particles have been found concurrent with the onset of COVID-19, which may contribute to the noncontact transmission of SARS-CoV-2. Exploring agents to block SARS-CoV-2 transmission is of great importance to prevent the COVID-19 pandemic. In this study, we found that inactivated Parapoxvirus ovis (iORFV), a kind of immunomodulator, could compress the proportion of small particle aerosols exhaled by Syrian golden hamsters. Notably, the concentration of SARS-CoV-2 RNA-containing aerosol particles was significantly reduced by iORFV in the early stages after viral inoculation. Importantly, smaller aerosol particles (<4.7 µm) that carry infectious viruses were completely cleared by iORFV. Consistently, iORFV treatment completely blocked viral noncontact (aerosol) transmission. In summary, iORFV may become a repurposed agent for the prevention and control of COVID-19 by affecting viral aerosol exhalation and subsequent viral transmission.

2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2143245

ABSTRACT

COVID-19 was officially declared a global pandemic disease on 11 March 2020, with severe implications for healthcare systems, economic activity, and human life worldwide. Fast and sensitive amplification of the severe acute respiratory syndrome virus 2 (SARS-CoV-2) nucleic acids is critical for controlling the spread of this disease. Here, a real-time reverse transcription recombinase-aided amplification (RT-RAA) assay, targeting conserved positions in the nucleocapsid protein gene (N gene) of SARS-CoV-2, was successfully established for SARS-CoV-2. The assay was specific to SARS-CoV-2, and there was no cross-reaction with other important viruses. The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability. Furthermore, 100% concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 72 clinical specimens. Further linear regression analysis indicated a significant correlation between the real-time RT-RAA and RT-qPCR assays with an R2 value of 0.8149 (p < 0.0001). In addition, the amplicons of the real-time RT-RAA assay could be directly visualized by a portable blue light instrument, making it suitable for the rapid amplification of SARS-CoV-2 in resource-limited settings. Therefore, the real-time RT-RAA method allows the specific, sensitive, simple, rapid, and reliable detection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Reverse Transcription , Recombinases/genetics , Recombinases/metabolism , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
3.
J Virol ; 96(18): e0103422, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2019727

ABSTRACT

The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/virology , Cricetinae , Feces/virology , Genomics , Humans , Mesocricetus , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Shedding
4.
Chem Eng J ; 451: 138822, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2003912

ABSTRACT

The novel mutations attributed by the high mutagenicity of the SARS-CoV-2 makes its prevention and treatment challenging. Developing an ultra-fast, point-of-care-test (POCT) protocol is critical for responding to large-scale spread of SARS-CoV-2 in public places and in resource-poor remote areas. Here, we developed a nanoplasmonic enhanced isothermal amplification (NanoPEIA) strategy that combines a nanoplasmonic sensor with isothermal amplification. The novel strategy provides an ideal easy-to operate detection platform for obtaining accurate, ultra-fast and high-throughput (96 samples can be tested together) data. For clinical samples with viral detection at Ct value <25, the entire process (including sample preparation, virus lysis, detection, and data analysis) can be completed within six minutes. The method is also appropriate for detection of SARS-CoV-2 γ-coronavirus mutants. The NanoPEIA method was validated using clinical samples from 21 patients with SARS-CoV-2 infection and 31 healthy individuals. The detection result on the 52 clinical samples for SARS-CoV-2 showed that the NanoPEIA platform had a 100% sensitivity for N and orf1ab genes, which was higher than those obtained using RT-qPCR (88.9% and 90.0%, respectively). The specificities of 31 clinical negative samples were 92.3% and 91.7% for the N gene and the orf1ab gene, respectively. The limits of detection (LoD) of the clinical samples were 28.3 copies/mL and 23.3 copies/mL for the N gene and the orf1ab gene, respectively. The efficient NanoPEIA detection strategy facilitates real-time detection and visualization within ultrashort durations and can be applied for POCT diagnosis in resource-poor and highly populated areas.

5.
Front Immunol ; 13: 869809, 2022.
Article in English | MEDLINE | ID: covidwho-1847173

ABSTRACT

Previous studies have shown that B.1.351 and other variants have extended the host range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to mice. Sustained transmission is a prerequisite for viral maintenance in a population. However, no evidence of natural transmission of SARS-CoV-2 in wild mice has been documented to date. Here, we evaluated the replication and contact transmission of the B.1.351 variant in mice and rats. The B.1.351 variant could infect and replicate efficiently in the airways of mice and rats. Furthermore, the B.1.351 variant could not be transmitted in BALB/c or C57BL/6 mice but could be transmitted with moderate efficiency in rats by direct contact. Additionally, the B.1.351 variant did not transmit from inoculated Syrian hamsters to BALB/c mice. Moreover, the mouse-adapted SARS-CoV-2 strain C57MA14 did not transmit in mice. In summary, the risk of B.1.351 variant transmission in mice is extremely low, but the transmission risk in rats should not be neglected. We should pay more attention to the potential natural transmission of SARS-CoV-2 variants in rats and their possible spillback to humans.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rats
6.
Front Cell Infect Microbiol ; 12: 897416, 2022.
Article in English | MEDLINE | ID: covidwho-1847157

ABSTRACT

The pandemic of respiratory diseases, such as coronavirus disease 2019 (COVID-19) and influenza, has imposed significant public health and economic burdens on the world. Wearing masks is an effective way to cut off the spread of the respiratory virus. However, due to cultural differences and uncomfortable wearing experiences, not everyone is willing to wear masks; there is an urgent need to find alternatives to masks. In this study, we tested the disinfection effect of a portable ionizer on pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (strain V34) and influenza A virus (strain CA04). Negative ions significantly reduced the concentration of particulate matter in the air above and effectively disinfected viruses stuck to the solid plate at the level of both nucleic acid and virus titer. The disinfection efficiency was >99.8% after 1-h exposure. Moreover, negative ions effectively disinfected aerosolized viruses; the disinfection efficiency was more than 87.77% after purification for 10 min. Furthermore, negative ions had a significant protective effect on susceptible animals exposed to viral aerosols. When the negative ionizer was switched from off to on, the inhalation 50% infective dose (ID50) for golden hamsters challenged with SARS-CoV-2 rose from 9.878 median tissue culture infective dose (TCID50) [95% confidence interval (CI), 6.727-14.013 TCID50] to 43.891 TCID50 (95% CI, 29.31-76.983 TCID50), and the inhalation ID50 for guinea pigs challenged with influenza A virus rose from 6.696 TCID50 (95% CI, 3.251-9.601 TCID50) to 28.284 TCID50 (95% CI, 19.705-40.599 TCID50). In the experiment of transmission between susceptible animals, negative ions 100% inhibited the aerosol transmission of SARS-CoV-2 and influenza A virus. Finally, we tested the safety of negative ion exposure. Balb/c mice exposed to negative ions for 4 weeks showed no abnormalities in body weight, blood routine analysis, and lung pathology. Our study demonstrates that air ions can be used as a safe and effective means of blocking respiratory virus transmission and contribute to pandemic prevention and control.


Subject(s)
COVID-19 , Influenza A virus , Aerosols , Animals , COVID-19/prevention & control , Cricetinae , Guinea Pigs , Ions , Mice , Pandemics/prevention & control , SARS-CoV-2
7.
Front Cell Infect Microbiol ; 11: 688007, 2021.
Article in English | MEDLINE | ID: covidwho-1389153

ABSTRACT

Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.


Subject(s)
Environmental Exposure , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Mice , Poultry/virology
8.
Front Microbiol ; 12: 722178, 2021.
Article in English | MEDLINE | ID: covidwho-1376706

ABSTRACT

Prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides protective immunity against reinfection. However, whether prior infection blocks SARS-CoV-2 transmission is not yet clear. Here, we evaluated the impact of prior infection on SARS-CoV-2 transmission in Syrian hamsters. Our results showed that prior infection significantly reduced SARS-CoV-2 replication in Syrian hamsters, but sterilizing immunity was not achieved. Prior infection blocked the airborne transmission of SARS-CoV-2 from previously infected Syrian hamsters to naïve Syrian hamsters and previously infected Syrian hamsters. Moreover, prior infection substantially reduced the efficiency of direct contact transmission between previously infected Syrian hamsters. However, prior infection had limited impact on SARS-CoV-2 transmission from previously infected Syrian hamsters to naïve Syrian hamsters via direct contact in the early course of infection. Human reinfection and SARS-CoV-2 transmission between a previously infected population and a healthy population would be likely, and a higher vaccination coverage rate was needed to reach herd immunity. Our work will aid the implementation of appropriate public health and social measures to control coronavirus infectious disease 2019 (COVID-19) pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL